Hans Adolf Krebs Net Worth

Hans Adolf Krebs was a German-born British biochemist who made significant contributions to the study of cellular respiration. He discovered two important chemical reactions in the body, the urea cycle and the citric acid cycle, and with Hans Kornberg, he discovered the glyoxylate cycle. His work, along with Fritz Lipmann's discovery of acetyl CoA, earned him the Nobel Prize in Physiology or Medicine in 1953. In addition to his scientific career, Krebs held important academic posts, including Demonstrator in biochemistry, Lecturer in Pharmacology, and Head and Professor of the Department of Biochemistry at the University of Sheffield.
Hans Adolf Krebs is a member of Scientists

Age, Biography and Wiki

Who is it? Biochemist
Birth Day August 25, 1900
Birth Place Hildesheim, Germany, German
Age 119 YEARS OLD
Died On 22 November 1981(1981-11-22) (aged 81)\nOxford, England, United Kingdom
Birth Sign Virgo
Citizenship Naturalised British (from 1939)
Alma mater University of Göttingen University of Freiburg University of Berlin University of Hamburg
Known for Krebs cycle Krebs–Henseleit solution Krebs–Henseleit cycle Glyoxylate cycle
Spouse(s) Margaret Cicely Fieldhouse (m. 1938)
Children Paul, John, and Helen
Awards Albert Lasker Award for Basic Medical Research (1953) Nobel Prize in Physiology or Medicine (1953) Royal Medal (1954) Copley Medal (1961)
Fields Internal medicine, biochemistry
Institutions Kaiser Wilhelm Institute for Biology University of Hamburg University of Cambridge University of Sheffield University of Oxford

💰 Net worth

Hans Adolf Krebs, a renowned German biochemist, is estimated to have a net worth ranging from $100K to $1M in 2024. Krebs, known for his significant contributions to the field of biochemistry, particularly in understanding cellular respiration and the Citric Acid Cycle, has made a lasting impact on scientific research. With numerous accolades and recognition for his groundbreaking work, Krebs' net worth highlights his valuable contributions to the scientific community.

Some Hans Adolf Krebs images

Famous Quotes:

Professor Sir Hans Krebs FRS 1900 – 1981 Biochemist & discoverer of the Krebs cycle Nobel Prize Winner 1953 worked here 1954 – 1967

Biography/Timeline

1904

While working at the Medical Clinic of the University of Freiburg, Krebs met Kurt Henseleit, with whom he investigated the chemical process of urea formation. In 1904, two Germans A. Kossel and H. D. Dakin had shown that arginine could be hydrolysed by the enzyme arginase to form ornithine and urea in inorganic reaction. Based on this reaction, Krebs and Henseleit postulated that in living cells, similar reaction could occur, and that ornithine and citrulline could be the intermediate reactions. Krebs started working on the possible method for the synthesis of arginine. Using his Warburg manometer, he mixed a slice of liver with purified ornithine and citrulline. He found that citrulline acted as a catalyst in the metabolic reactions of urea from ammonia and carbon dioxide. He and Henseleit published their discovery in 1932. Thus the ornithine cycle was established, and it was the first metabolic cycle to be discovered.

1918

Krebs was born in Hildesheim, Germany, to Georg Krebs, an ear, nose, and throat surgeon, and Alma Krebs (née Davidson). He was the middle of three children, older sister Elisabeth and younger brother Wolfgang. He attended the famous old Gymnasium Andreanum in his home town. Before completing his secondary school education (by six months) he was conscripted into the Imperial German Army in September 1918, during World War I. He was allowed to appear in an emergency examination for the higher school leaving certificate, which he passed in such a good grade that he suspected the examiners of being "unduly lenient and sympathetic". The war ended after two months and his conscription ended. He decided to follow his father's profession and entered the University of Göttingen in December 1918 to study Medicine. In 1919 he transferred to the University of Freiburg. In 1923 he published his first technical paper on tissue staining technique, the study which he started under the guidance of his Teacher Wilhelm von Mollendorf in 1920. He completed his medical course in December 1923. To obtain a medical license he spent one year at the Third Medical Clinic in the University of Berlin. By then he turned his ambition from becoming a practising physician to medical researcher, particularly towards chemistry. In 1924 he studied at the Department of Chemistry at the Pathological Institute of the Charité Hospital, Berlin, for informal training in chemistry and biochemistry. He finally earned his MD degree in 1925 from the University of Hamburg.

1926

In 1926 Krebs joined Otto Heinrich Warburg as a research assistant at the Kaiser Wilhelm Institute for Biology in Dahlem, Berlin. He was paid a modest 4800 marks per year. After four years in 1930, with 16 publications to his credit, his mentor Warburg urged him to move on and he took up the position of Assistant in the Department of Medicine at the Municipal Hospital in Altona (now part of Hamburg). The next year he moved to the Medical Clinic of the University of Freiburg. At Freiburg he was in-charge of about 40 patients, and was at liberty to do his own research. Before a year was over at Freiburg, he, with a research student Kurt Henseleit, postulated the metabolic pathway for urea formation, now known as the ornithine cycle of urea synthesis. (Sometimes also referred to as the Krebs–Henseleit cycle. Together they also developed a complex solution for studying blood flow in arteries or perfusion ex vivo called Krebs–Henseleit solution or buffer.) In 1932 he worked out the basic chemical reactions of urea cycle, which established his scientific reputation.

1933

Krebs's life as a reputed German scientist came to an abrupt halt because of his Jewish ancestry. With the rise of Hitler's Nazi Party to power, Germany decreed the Law for the Restoration of the Professional Civil Service (the removal of all non-Aryans and anti-Nazis from professional occupations). Krebs received official dismissal from his job in April 1933, and his Service was terminated on 1 July. An admirer, Sir Frederick Gowland Hopkins at the University of Cambridge, immediately came to his rescue and persuaded the university to recruit Krebs to work with him in the Department of Biochemistry. By July 1933 he settled in Cambridge with financial support from the Rockefeller Foundation. Although he was restricted to bring only his personal belongings, he was fortunate to be allowed to take his equipment and research samples to England, as they proved to be pivotal to his later discoveries, especially the manometer developed by Warburg specifically for the measurement of oxygen consumption in thin slices of tissues; it was the basis for his research. He was appointed as Demonstrator in biochemistry in 1934 and in 1935 the University of Sheffield offered him a post of Lecturer in Pharmacology, with a more spacious laboratory and double the salary; he worked there for 19 years. University of Sheffield opened a Department of Biochemistry (now Department of Molecular Biology and Biotechnology) in 1938 and Krebs became its first Head, and eventually Professor in 1945. Krebs took over the running of the Sorby Research Institute in 1943. In 1944, the British Medical Research Council established the MRC Unit for Cell Metabolism Research at Sheffield, and Krebs was appointed as the Director. With this his laboratory became so expanded that the locals jokingly nicknamed it "Krebs's Empire". He moved with his MRC unit to the University of Oxford in 1954 as Whitley Professor of Biochemistry, the post he held till his retirement in 1967. The editorial board of Biochemical Journal extended their good wishes on his retirement, but in return he promised to keep them busy (by producing scientific papers). He continued research and took his MRC unit to the Nuffield Department of Clinical Medicine at the Radcliffe Infirmary, Oxford. From there he published over 100 research papers.

1937

Krebs sent a short manuscript account of the discovery to Nature on 10 June 1937. On 14 June he received a rejection letter from the Editor, saying that the journal had "already sufficient letters to fill correspondence columns for seven or eight weeks", and encouraging Krebs to "submit it for early publication to another periodical." Krebs immediately prepared a longer version titled "The Role of Citric Acid in Intermediate Metabolism in Animal Tissues", which he sent to the Dutch journal Enzymologia after two weeks and was published in two months. It was followed by a series of papers in different journals.

1938

Krebs met Margaret Cicely Fieldhouse (born 1913) when he moved to Sheffield in 1935. They married on 22 March 1938. Krebs later described his life in Sheffield as "19 happy years". They had two sons, Paul (born 1939) and John (born 1945), and a daughter, Helen (born 1942). John (Sir John Krebs, and later Baron Krebs) became a renowned ornithologist, Professor at the University of Oxford, Principal of Jesus College, Oxford, and Member of the British House of Lords.

1939

Krebs became a naturalised British citizen in 1939. He was elected Fellow of Trinity College, Oxford, 1954-1967. He was elected to the Royal Society in 1947. In 1953 he received the Nobel Prize in Physiology or Medicine for his "discovery of the citric acid cycle." (He shared the Nobel Prize with Fritz Lipmann.) For the same reason he was given the Albert Lasker Award for Basic Medical Research in 1953. The Royal Society awarded him its Royal Medal in 1954, and Copley Medal in 1961. In 1958 he received the Gold Medal of the Netherlands Society for Physics, Medical Science and Surgery. He was knighted in 1958 and was elected Honorary Fellow of Girton College, Cambridge University in 1979. He was the Original Member of the Society for General Microbiology, which conferred him Honorary Membership in 1980. He received an honorary doctorate from 21 universities.

1947

Krebs continued to add more details to his citric acid cycle. The discovery of acetyl-CoA in 1947 by Fritz Albert Lipmann was another major contribution. However, this new discovery posed a Problem in his classic reaction. In 1957 he, with Hans Kornberg, found that there were additional crucial enzymes. One was malate synthase, which condenses acetate with glyoxylate to form malate, and the other was isocitrate lyase, which provides glyoxylate for the reaction by cleaving it from isocitrate. These two reactions did not follow the normal citric acid cycle, and hence the pathway was named the glyoxylate bypass of the citric acid cycle, but is now known as the glyoxylate cycle.

1981

After a brief illness, Krebs died on 22 November 1981 in Oxford.

1988

The University of Sheffield has The Krebs Institute, founded in 1988. It is a research centre covering interdisciplinary programmes in biochemical research.

1990

In 1990 the Federation of European Biochemical Societies instituted the Sir Hans Krebs Lecture and Medal, which was endowed by the Lord Rank Centre for Research. It is awarded for outstanding achievements in biochemistry and molecular biology.

2013

The University of Oxford had a building named Hans Krebs Tower, which was occupied by the Department of Biochemistry. In 2008 a new building for the Department of Biochemistry was constructed, on which a plaque was placed on 20 May 2013 by the Association of Jewish Refugees. The plaque was unveiled by John, Lord Krebs, and the inscription reads:

2014

The Biochemical Society offers Krebs Memorial Scholarship to a postgraduate (PhD) student working in biochemistry or an allied biomedical science at any British university. As of 2014, the scholarship is worth £18,500 and is given for a year, but is extendable up to three years.

2017

In May 2017, Krebs's Nobel Prize medal has been auctioned off for £225,000 (around $351,225). The proceeds will be used to found the Sir Hans Krebs Trust which will provide funding for doctoral students in the biomedical field and support chemists who had to flee their home countries.