The basic idea behind Appleton’s work is so simple that it is hard to understand at first how he devoted almost all of his scientific career to its study. However, in the last couple of paragraphs some of the complexities of the subject have been introduced. Like many other fields, it is one that grows in intricacy the more it is studied. By the end of his life, ionospheric observatories had been set up all over the world to provide a global map of the reflecting layers. Links were found to the 11 year sunspot cycle and the Aurora Borealis, the magnetic storms that occur in high latitudes. This became particularly relevant during the Second World War when the storms would lead to radio blackouts. Thanks to Appleton’s research, the periods when these would occur could be predicted and communication could be switched to wavelengths that would be least affected. Radar, another crucial wartime innovation, was one that came about thanks to Appleton’s work. On a very general level, his research consisted in determining the distance of reflecting objects from radio signal transmitters. This is exactly the idea of radar and the flashing dots that appear on the screen (a cathode ray tube) scanned by the circulating ‘searcher’ bar. This system was developed partly by Appleton as a new method, called the pulse method, to make ionospheric measurements. It was later adapted by Robert Watson-Watt to detect aeroplanes. Nowadays, ionospheric data is important when communications with satellites are considered. The correct frequencies for these signals must be selected so that they actually reach the satellites without being reflected or deviated before.