Although Newton rejected the wave theory, he noticed its potential to explain colors, including the colors of "thin plates" (e.g., "Newton's rings", and the colors of skylight reflected in soap bubbles), on the assumption that light consists of periodic waves, with the lowest frequencies (longest wavelengths) at the red end of the spectrum, and the highest frequencies (shortest wavelengths) at the violet end. In 1672 he published a heavy hint to that effect, but contemporary supporters of the wave theory failed to act on it: Robert Hooke treated light as a periodic sequence of pulses but did not use frequency as the criterion of color, while Huygens treated the waves as individual pulses without any periodicity; and Pardies died young in 1673. Newton himself tried to explain colors of thin plates using the corpuscular theory, by supposing that his corpuscles had the wavelike property of alternating between "fits of easy transmission" and "fits of easy reflection", the distance between "fits" depending on color and, awkwardly, on the angle of incidence. It was not until 1801 that Thomas Young, in the Bakerian Lecture for that year, cited Newton's hint, and accounted for the colors of a thin plate as the combined effect of the front and back reflections, which reinforce or cancel each other according to the wavelength and the thickness. He similarly explained the colors of "striated surfaces" (e.g., gratings) as the wavelength-dependent reinforcement or cancellation of reflections from adjacent lines. Young described this reinforcement or cancellation as interference.